Economic Comparison of SO₃ Control Options for Coal-fired Power Plants

Gary Blythe, URS Corporation
Bill Aljoe, U.S. DOE/NETL
Dick Rhudy, EPRI

Background

- Boilers firing bituminous coal convert ~0.5 to 1.5% of SO₂ to SO₃
- SCR retrofits, pet coke co-firing can double SO₃ formation
- Resulting sulfuric acid (H₂SO₄) and/or ammonium bisulfate (NH₄HSO₄) can cause problems:
 - SCR catalyst fouling
 - Air heater plugging or reduced plant efficiency
 - Back-end corrosion
 - Plume opacity

Background (continued)

- Existing emission controls do not collect SO₃/sulfuric acid at high efficiency:
 - 20% removal is typical across air heaters and cold-side ESPs
 - mostly adsorption, condensation
 - actual percentages vary
 - 50% removal is typical across wet scrubbers
 - measured range <10% to >80%

Example Sulfuric Acid Plume

Note blue sulfuric acid plume

See "shadow" from opaque plume in the distance

Current DOE/EPRI/Utility Co-funded Project

- Investigated furnace injection of Mg(OH)₂ slurries (commercial and byproduct) for SO₃ control
 - Full-scale tests at FirstEnergy Bruce Mansfield
 Plant and AEP Gavin Station
 - Results presented at '01 and '03 Mega Symposia
- Economic evaluation (subject of this presentation) considered a wide range of potential SO₃ controls

Potential Sulfuric Acid Control Options

Fuel Blend/Switch (Low-sulfur Coal)

- Demonstrated for reducing SO₃ in flue gas and reducing plume opacity
- Potentially high operating cost, driven by fuel price differential
- Balance-of-plant issues need to be considered:
 - Coal yard
 - Mill capacity
 - Furnace fouling/slagging,
 - ESP performance, etc.

Furnace Injection of Mg Hydroxide Slurry

- Demonstrated in current DOE/EPRI project, but limited overall control effectiveness seen at AEP Gavin (with SCR)
 - High control percentage of furnace-formed SO₃
 - Little control of SCR-formed SO₃
- Potential benefits to SCR operation at low load
- Potential adverse effects on cold-side ESP at high control efficiency for plants without SCR

Gavin Mg(OH)₂ Injection Results - SO₃ Control at Economizer Outlet

Mg:SO₃ Mole Ratio (based on baseline SCR out SO₃)

Gavin Mg(OH)₂ Injection Results - SO₃ Control at ESP Outlet

Mg:SO₃ Mole Ratio (based on baseline SCR out SO₃)

Injection of SBS Solution at SCR Outlet Duct

- Tested at five plants to date (two EPRI cofunded)
 - Medium to high S coal, with and w/o SCR
- Two commercial systems currently operating
- Can achieve high SO₃ removal percentages
- Concerns over:
 - Reagent cost
 - Reliability of injecting aqueous solutions in duct, impacts on air heater?

Vectren A.B. Brown Short-term SBS Results - ESP Outlet

Injection of MgO Powder at SCR Outlet Duct

- Not well demonstrated
 - Only vendor data available
 - No performance data published for high SO₃
 levels
- Could be cost effective if vendor data are proven
- Potential adverse effects on ESP at high control efficiencies

Alkali Injection Downstream of Air Heater

Ammonia Injection

- Low evaluated cost
- Adverse effect on fly ash reuse
- Other potential balance of plant impacts

Hydrated Lime Powder Injection

- Demonstrated at Gavin, EPRI pilot, others
- Potentially high reagent costs
- Adverse effects on ESP at high control percentages

Humidification/Lime Injection after Air Heater

- Demonstrated only at pilot scale (EPRI, upstream of ESP) or limited full-scale tests (Chemical Lime, upstream of FGD)
- Potential for duct corrosion, solids deposition
- Requires high particulate removal across scrubber if injected downstream of ESP
 - However, excess lime gets utilized as an FGD reagent
- Affects FGD water balance due to water sprayed in duct

Humidification Upstream of FGD Absorbers (no alkali injection)

- Not well demonstrated (one E.ON reference at low uncontrolled SO₃ levels)
- Potentially low cost (no new reagent)
- Requires high removal of condensed acid across scrubber
- Potential duct corrosion and FGD water balance issues
- Not included in this evaluation due to lack of performance data

Wet ESP – Conversion of Last Field of Existing Dry ESP

- Humidification in wet field condenses sulfuric acid in flue gas
 - Up to 60-80% SO₃ removal measured in EPRI pilot-scale tests
- Co-benefits from control of fine particulate and reentrainment emissions
- Capital costs estimated at \$30 to \$40/kW
- No benefits to air heater
- Impacts FGD water balance
- Demonstrated at full scale only one site (Mirant Dickerson Station), no full-scale experience for high S coal, SCR, wet FGD combination

Wet ESP – Retrofit Downstream of Wet FGD

- Up to 95% or greater sulfuric acid removal
- Higher capital cost (~\$40 to >\$70/kW)
- Potentially long outage required to install
- No benefits to air heater or back-end corrosion
- Potential co-benefits from control of fine particulate emissions and/or stack rainout
- Demonstrated at full scale, but not for high S coal, SCR, wet FGD combination

Example SO₃ Control Economics

- Hypothetical plant (high S coal, SCR retrofit)
- Data from literature or current project used to estimate SO₃ control performance of technologies
- Material balance calculations used to estimate reagent and utilities consumption, size major equipment
- Capital cost estimates developed from factored estimates on major equipment purchase cost (except wet ESP, used \$/kW)

Example Plant SO₃ Concentrations - Before and After SCR Retrofit

Example Plant for Comparing SO₃ Control Technologies

Parameter	Value
Unit Load (gross MW)	500
Gross Plant Heat Rate (Btu/hr/KW)	9200
Capacity Factor (%)	85
Flue Gas Flow Rate (acfm at economizer outlet)	2.07×10^6
Coal Sulfur Content (%)	3.5
Flue Gas SO ₂ Content (ppmv wet at economizer outlet)	2790
NO _x Season Duration (months/yr)	5
Target Stack Sulfuric Acid Concentration (ppmv, dry basis):	
For lower SO ₃ removal percentage target	9.5
For higher SO ₃ removal percentage target	3.0

Performance Bases for Control Options

Technology	For 9.5 ppmv at Stack	For 3.0 ppmv at Stack
Fuel Blending	32% low-sulfur coal	87% low-sulfur coal
Furnace Injection Byproduct Mg	3.9:1 Mg:SO ₃ ratio	-
Furnace Injection Commercial Mg	3.9:1 Mg:SO ₃ ratio	-
MgO Injection Upstream of AH	1.25 mole Mg per mole SO ₃ removed	1.25 mole Mg per mole SO ₃ removed
SBS Injection Upstream of AH	1.0 mole Na per mole SO ₃ removed	1.2 mole Na per mole SO ₃ removed
NH ₃ Injection Upstream of ESP	Not estimated	1.8 mole NH ₃ per mole SO ₃ removed
Humidification/Lime Injection Upstream of ESP	Humidification to 293°F, lime injection at 1 lb/hr/kacfm	Humidification to 275°F, lime injection at 1 lb/hr/kacfm
Hydrated Lime Injection Upstream of ESP	Lime injection at 2 lb/hr/kacfm	Lime injection at 5.6 lb/hr/kacfm
Wet ESP	Last field of dry ESP conversion	Wet ESP retrofit downstream of FGD

Cost Factors for Comparing SO₃ Control Technologies

Factor	Value Used
Byproduct Mg(OH) ₂ slurry, delivered (\$/dry ton of pure Mg(OH) ₂ , shipped at 18% solids, 65% purity in solids, 100-mile distance)	203
Commercial Mg(OH) ₂ slurry, delivered (\$/dry ton Mg(OH) ₂ , shipped at 58 wt% solids, 100% purity in solids, 600-mile distance)	334
Utilimag 40 MgO powder, delivered (\$/dry ton MgO, 600-mile distance)	422
Sodium Sulfite, delivered (\$/dry ton available Na as Na ₂ SO ₃)	300
Ammonia, delivered from existing plant system (\$/ton)	300
Hydrated Lime, delivered (\$/ton)	80
Plant Low-sulfur Fuel Cost Differential (\$/MM Btu)	0.20
Gypsum Byproduct Value (\$/wet ton, f.o.b. plant)	5.00
Fly Ash Byproduct Value (\$/ton f.o.b. plant)	3.00
Incremental Landfill Disposal Costs (\$/ ton)	4.00
Annual Capital Recovery Factor	0.15

Cost Estimate Comparisons for SO₃ Control Technologies

Technology (each shown at two control levels)

Conclusions

- Many technologies are available to remove SO₃/sulfuric acid from coal flue gas, but:
 - More full-scale results are needed to allow utilities to evaluate performance, cost, reliability, balance of plant impacts
 - Lowest cost technology may be very site specific, require detailed evaluation to select
- Furnace Mg(OH)₂ injection may be cost effective at moderate control levels